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Transport coefficients for stochastic rotation dynamics in three dimensions
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Explicit expressions for the transport coefficients of a recently introduced stochastic model for simulating
fluctuating fluid dynamics are derived in three dimensions by means of Green-Kubo relations and simple
kinetic arguments. The results are shown to be in excellent agreement with simulation data. Two collision rules
are considered and their computational efficiency is compared.
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I. INTRODUCTION ri(t+7)=r;(t)+7v(t), (1)

In a series of recent papdrs—3], a discrete-time projec- vi(t
. ) . i(t+7)
tion operator technique was used to derive Green-Kubo rela-
tions for the transport coefficients of a new stochastic — =u[&](t+7)]+ @[ &E(t+7)]-{vi(t)—u[&(t+ )]},
model—which we will call stochastic rotation dynamics—
for simulating fluctuating fluid dynamicdgt,5]. Explicit ex-
pressions for transport coefficients in two dimensions were s . . .
derived, and it was shown how random shifts of the collision”/'é'® @(£7) denotes a stochastic rotation matrix, and
environment could be used to ensure Galilean invariance fdf(£1) =(1/M)Zyc sV is the mean velocity of the particles in

arbitrary Mach number and temperature. In this paper, Wgell &3S, All particles in the cell are subject to the same rota-

extend our analytical and numerical analysis to three dimenZo": but the rotations in different cells are_statlstlcally mdg—
endent. There is a great deal of freedom in how the rotation

sions and consider two distinct collision rules. Expressiongte is implemented. and anv stochastic rotation matrix con-
for the transport coefficients are derived and compared with. P P S y .
sistent with detailed balance can be used. The dynamics of

simulation results. No assumptions are made regarding Mre SRD algorithm is explicitly constructed to conserve
lecular chaos, and the co_rr_elations that can develop at sm ass, momentum, and energy, and the collision process is
mean free path are explicitly accounted for. The only apyne simplest consistent with these conservation laws. The
proximation we make is to neglect fluctuations in the ”Umberalgorithm is Galilean invariant, there is &htheorem, and it

of particles in the cells which are used to define the collisioryiekjS the correct hydrodynamics equations with an ideal gas
environment. This amounts to neglecting terms of ordelgquation of statd2,4]. SRD has been used to study flow
e M, whereM is the average number of particles in a cell, around solid objects in both twi®,7] and threg8] dimen-

and is therefore justified in all practical calculations, wheresjons, dilute polymer solution®], binary mixtureq10,11],

(2

M=5. amphiphilic mixtureq12—-14], colloids[15,16), and cluster
In the stochastic rotation dynami¢SRD) algorithm, the  structure and dynamid4.7].
fluid is modeled by particles whose position coordinaifég In two dimensions, the stochastic rotation matexis

and velocitiesv;(t) are continuous variables. The system istypically taken to be a rotation by an angtex, with prob-
coarse grained into cells of a regular lattice, and there is nability 1/2. Analytic expressions for the transport coefficients
restriction on the number of particles in a cell. The evolutionin this case were derived in Refd—3] and shown to be in

of the system consists of two steps: streaming and collisiorexcellent agreement with simulation results. In three dimen-
In the streaming step, all particles are simultaneously propasions, one collision rule that has been discussed in the litera-
gated a distance; 7, wherer is the value of the discretized ture[4,5,8 consists of rotations by an angle about a ran-
time step. For the collision step, particles are sorted intalomly chosen direction. All orientations of the random axis
cells, and they interact only with members of their own cell.occur with equal probability. Note that rotations by an angle
Typically, the simplest cell construction consisting of a hy- —« do not need to be considered, since this amounts to a
percubic grid with mesh sizais used. As discussed in Refs. rotation by an angler about an axis with the opposite ori-
[1] and[2], a random shift of the particle coordinates beforeentation. The viscosity of this model has been measured us-
the collision step is required to ensure Galilean invariance. liing a Poiseuille flow geometry in R€i8]. Analytical expres-

our implementation of this procedure, all particles are shiftecsions for the transport coefficients in this case are only
by thesamerandom vector with components in the interval available in the limit of large mean free pattja—«, and
[—al2,a/2] before the collision step. Particles are thenfor one rotation angler=90° [5]. In the following, we will
shifted back to their original positions after the collision. If refer to this collision rule as model A. Another, computation-
we denote the cell coordinate of the shifted partidy &7, ally simpler collision rule, which we will refer to as model B,
the dynamics is summarized by involves rotations about one of three orthogonal rotation
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axes. In the implementation considered here, we take these for =1, ... d, and
bex, y, andz axes of a Cartesian coordinate system. At each
collision step one of these three axes is chosen at random, | R t)— 1 >
and a rotation by an angte « is then performed, where the ar2(K )= 2
sign is chosen at random. This procedure is fast and easy to
implement; furthermore, only six different rotation matrices
are needed, which are sparse and contain fixed elements of
1, ®sin(a), and cosg). Our simulations have shown that
both collision rules lead to a rapid relaxation to thermal equiwherec,=d kg/2 is the specific heat per particle at constant
librium characterized by the Maxwell-Boltzmann velocity volume of an ideal gasAv =] (t+ r)—v (1), A&(t)
distribution. =&+ 1) —&(), andAE(t) = §,(t+7-) £ (t+r) where
The outline of the paper is as follows. In Sec. Il we briefly £(t+ 7) is the cell coordinate of particleat timet+ 7 and

summarize the Green-Kubo relations for the transport coefgs(t+ 7) is the corresponding shifted particle cell coordinate.
ficients. Sections Il and IV contain detailed descriptions OmeceAr,(t)— (1), Il(k,t)—O to this order ink.

the two collision rules, as well as analytical and numerical
calculations of the shear viscosity, thermal diffusivity, and
self-diffusion coefficient at both large and small mean free

—|[vA(t)/2—c,TIk-A&(t)

+7kgTk-vi (1) |, (7)

1, .
+ 5 AvP(OK-AER(D)

1. Shear viscosity

paths_ The work is summarized in Sec. V. In three dimensions, the shear ViSCOSity can be obtained
if, for example, one take& in the z direction andg=e
Il. HYDRODYNAMICS =1, in the Green-Kubo relation, E(3), so that
The transport coefficients of a simple liquid are the kine-
matic shear and bulk viscosities,and y, and the thermal = E (152,01 5(Z,1)). (8
diffusivity coefficient D;. Explicit expressions for the NKkgT t=

asymptotic(long-time limit) shear and bulk viscosities and

thermal diffusivity of the SRD algorithm were derived in There are two contributions to the reduced fluxes, namely,
Ref.[2] using a projection operator technique. In particular,kinetic and rotational, so that

it was shown that the kinematic viscosities can be expressed

in terms of the reduced fluxes kispace as l(zt) = 15"z, ) +12(z.1), 9)
d—2 kgk, KgKe where
v| Og. T +y
B K2 k2 km 1
(20== 7 2 v A& (10
Nkt 2 2 (I pkOll1o(kD), Q) g
while the thermal diffusivity is given by rot(z t)=—- 2 Avi (DAE(L). (11)
~ ~ kin ;
D 2 lgs2(K,0)| 142 2(K, 1)), (4  Contributions tal ;" come from the streaming step, whereas
e NkBT2 t=0 (ave o > the collisions and shifts contribute t¢°*. There are corre-

_ o _ . sponding kinetic, rotational, and mixed contributions to the
whered is the spatial dimensiore, = (d+2)kg/2 is the spe-  shear viscosity.

cific heat per particle at constant pressure, and the prime on

the sum indicates that the=0 term has the relative weight 2. Thermal diffusivity

1/2. Here and in the following we have set the particle mass , o o

equal to 1. The thermal conductivity is related toD by Similarly, settingd=3 and takingk in the z direction in
Eqg. (4), one has

k=pCpDr. (5)

The reduced fluxes in EqE3) and(4) are(see Refs[2,3] for Di=——— 2 (15(2,0)|15(z,1)). (12)

detailg CpNkgT* (=
Again, the reduced flux can be divided into the kinetic and

Kk 1 Kk rotational contributions, so that
gk =2 2 | ~[vig(DK- A& (D) !

. Is(z) =18z, +12Y(Z,), (13

N k
vk ag O+ L0 ©
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FIG. 2. The normalized relaxation timeg/M of the fourth
moment of the velocity distributionS,=S;(vi,+viy+viy) as a
function of the rotation angle for M =20, whereM is the average
number of particles per cell. The data for model A (*) were ob-
tained forA/a=1.15, while the data for model B correspond to
: NMa=1.15 (@) and \/a=0.0361 (J). Parameterst./a=32 and
=1.
FIG. 1. Rotation of the vector’ around a random directioR
by the anglex. T, Which is essentially temperature independent. Further-
more, it was found thatg is proportional to the average
Kin, = 1 viz(t) number of particles in a celM, and depends strongly on the
ls(zt)=— Z C,T— —5— A& () + 7Kg Tui(1) value of the rotation angler. It diverges approximately as
(14) r~a 2 for a—0, since there are no collisions in this limit,

and thermal equilibrium cannot be achieved. As can be seen

and in Fig. 2, similar behavior is observed in three dimensions
L . for both models A and B.
IP(zh=--2 SAf(ALMD. (19 -
! A. Large mean free path approximation
1. Sh i i
Ill. MODEL A: ROTATION AROUND A RANDOM AXIS Shear viscosity

For large mean free path/a— «, the rotational contri-

butions to the reduced flux{’!(z,t), in Eq. (9) can be ne-

glected, so that the shear viscosity can be expressed as

As discussed in the Introduction, one choice of collision
rule is a rotation by an angle about a randomly chosen axis
(see Fig. 1 This collision rule has been used in a recent
study of Poiseuille flow and flow around a spherical obstacle, ‘
and was shown to yield excellent resu[@]. Denote the T 2

i g : . v= [ 1
random vector byR; the postcollision velocity of a particle NkgT =0 " an
at time stept+ 7 can then be written as

~ where
V(T4 7) = ugs(t) + Vi (t)cog a) +[ V! (t) X R]sin( @) +vy(t),

(16 Co=(15"(2,0)[15"(z,n7))

where L and|| denote the components of a vector that are
perpendicular and parallel to the random aRisthe relative = iz E (Vix(0)A&(0)vj(NT)AEL(NT)).  (18)
velocity V' (t) =v(t) —ugs(t). T

The relaxation to thermal equilibrium is characterized by
the decay rate of thél-function [2]. However, a simpler As discussed in Ref.3], except for thet=0 contribution,
procedure is to monitor the relaxation of the fourth moment,C,, it is a good approximation to replacet;, by 7v;, when
Sy=3i(vix+viy+oiy), of the velocity distribution. This was evaluatingC, . In the following, we therefore first evaluate
done in Ref[2] in two dimensions, where it was shown that using this approximation, and then discuss the required cor-
S, relaxes exponentially to the equilibrium value given by rection term.
the Maxwell-Boltzmann distribution with a relaxation time  The relevant components of E(.6) can be written as
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vix(t+7)= ng(t) +c|vix(t) — ng(t)

—% [vi (1)~ Ugg() IR4R,
+ S{[Uiy(t) - ugy(t)]Rz_ [vi (1) — ugz(t)]Ry}

“‘Eﬁ: [vig(t) —Uga(1) IRgRy, (19

ViZ(t+7)=ug(t)+c

Uiz(t)_ugz(t)

- % [vig(t) —Uga(1) IRgR,
+s{[vix(t)— ng(t)]Ry_ [viy(t) - ugy(t)]Rx}

+§ [vi(t) —Uga() IRgR,, (20)

wherec=cos(a), s=sin(a), Uz=(1/M)Zy vy, and the sum
runs over all particles in the cell occupied by particlat t
=nr. Defining

An=i2j (Vix(0)vi (0 (N7 (NT)), (2D

we have

Ao= 2 <Uixvizvjxvjz> = 2 <vixvizvixviz> = N(kBT)Zv
i i
(22

so that there are only contributions frojsi. The second
term in the series is

Al=; (Vi iV (T }(7)), (23)

wherevj,(7) andv,(7) are given by Eqs(19) and (20),

respectively. There are both diagonpi(i) and off-diagonal
(j#1) contributions toA;. Making use of the following av-

erages over the random vectr

(R%)=1/3 (24)
and
(RERE,)=1/15+2/158; 41, (25)
the diagonal contribution is found to be
(Vix0iix(T)i(7) = (KsT)?*La, (26)

where
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1 2 1 2
Tl p2_ 2 Sa 2| =
a 3[ c°—s +5(c 1) MM 1)
2c| 1 2 ! 2
+2C —W +M +M . (7)

The off-diagonal contribution comes from particles/hich
are in the same cell as partidl@tt=0. This contribution is
equal to

<Uiinzij(T)Uiz(7')>: A (29)

where

NA= (6c—1)(c—1). (29

15M?2

Since there aréM — 1 off-diagonal contributions, it follows
that
A1=N(kgT)’[{a+(M—1)74]. (30

The behavior over longer time intervals can be analyzed
in a similar fashion. Considek,. Following the arguments
of the last paragraph, there is a diagonal contribution propor-
tional to gf\, and an off-diagonal contribution proportional to
2(M—=1)nala, since at each time step] — 1 particles be-
come correlated with particle and particlej can become
correlated with particlé at either of the two time steps. Note,
however, there are now additional—higher order—
contributions that arise, for example, when partigide-
comes correlated with particlewhich then becomes corre-
lated with particlei. It is easy to see that these contributions
carry additional factors of M and are thus of higher order
than the diagonal and direct off-diagonal contributions con-
sidered above. However, these higher off-diagonal contribu-
tions can be summed in the geometric series

AnIN(kgT)?=[¢a+ (M —1) 7]"

~HANM=1) it (3D
so that
1 & .
v=KkgT7 E*';l [§A+(M_1)7]A]J)
:kBTT 5 _1
2 1
(1—M)[2—cos{a)—cos(2a)]
(32

As discussed above, there is an additional finite cell size
correction to this result. It arises from the fact that the sub-
stitution A &, = 7v;,, in Cy is not precisely correct. Rather, it
can be shown thdi3]
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kBT a2 2 1 2 1.2
C0~A0+NT; =N(kgT)“| 1+ g(a/)\) (33
for A>a. Using this result in Eq(17), the corrected kine- o
matic viscosity is =,
=
<
kgTr 5 . a? £
=72 1 T 2
1- M [2—coga)—cog2a)] %
\'%
(34)
Note that although this additional term is, in general, negli- . .
gibly small in three dimensions, it can dominate the viscosity 0.2 0 5 10 15
in two dimension$3]. In particular, forM — o, the viscosity t/1
in model A takes the minimum value .
kgT 3 + L2 35
lenTBE 12\ % (39 3| (b)
at a~104.48°. In contrast, in two dimensions, the minimum - 2
is at a=90° for M —o0, and N
£
2 g !
TkBT a
Voin= 13 | x (36

In this limit, the finite cell size correction provides the sole
contribution to the viscosity in two dimensions. The viscos- -1 : :
ity for model A is always larger than the viscosity in two 0 10 v 20 80
dimensions. In order to determine the accuracy of B4), T

we have performed simulations using a system of linear di- FIG. 3. @ Normalized  correlation  functions
mensionL/a=32, usingr=1, andM=5 and 20 particles (1,(0)I,(t))/N(kgT)? for model A as a function of time for

per cell. Figure 83 contains a plot of the normalized corre- =30° (solid symbol$ and a=150° (unfilled symbol$. For «
lation function(1,(0)1,(t))/N(kgT)? as a function of time  =30°, the kinetic, rotational, and mixed contributions are indicated
for two different collision anglesqg=30° and 150°. As ex- by ®, B, and<, respectively. Forr=150°, the kinetic, rotational,
pected, the correlations decay much faster for the larger cornd mixed contributions are indicated by, [J, and <, respec-
lision angle. The resulting time dependent kinematic viscostively. (b) Normalized time dependent kinematic viscosity,
ity is shown in Fig. 8b), and the normalized asymptotic v(t)/7kgT. Symbols are the same as in péal. Parameterst./a
value of the viscosityp/(7ksT), is plotted in Fig. 4a) as a =32, Ma=2.309, 7=1, andM=20. The data were obtained by
function of « for N\/a=2.309, andl =5 and 20, and in Fig. tMe averaging over 75000 iterations.

4(b) for A=1.02 andM =20. The agreement between the
analytical result and simulation data is excellent. Figua 5
contains a plot of the normalized kinematic viscosityfa®

as a function of X/a)? for «=90° andM = 20. Also shown

in Fig. 5a) are data @) for the viscosity obtained by fitting .
the one-dimensional velocity profile of forced flow between T ,

parallel plates in three dimensiof8]. Again, the agreement DT:m E Bn, (37)
between both sets of data and theory is excellent. P

occur in the calculation of the thermal diffusivity, so that
A¢;, can be replaced byv;,. The thermal diffusivity can
therefore be expressed as

whereB,=(1£"(z,0)|1£"(z,n7)) with
2. Thermal diffusivity
N 2
As discussed in the preceding section, for large mean free in 2 vi(t)
P 9 g KNz, =", (cpT— oy,

path, the rotational contributions to the thermal diffusivity in = 2
Eqg. (12) can be neglected. Furthermore, finite cell size cor-
rections of the type discussed in the preceding section do n&ince

(38
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FIG. 4. Normalized kinematic viscosity/ 7kg T for model A as
a function of the collision anglexr. (a) Data for L/a=32, \/a
=2.309,7=1, andM=5 (Hl) andM =20 (®). (b) Data forL/a
=32, NM/a=1.02, 7=1, andM=20. The bullets are results ob-
tained using the Green-Kubo relation, and the unfilled boxe} (
are data for the kinematic viscosity obtained in H&. by fitting

the one-dimensional velocity profile of forced flow between parallel

plates. The lines are the theoretical prediction, E3#), for the

corresponding parameter values. The data were obtained by time

averaging over 75 000 iterations. The deviation of the data fidint
at «=30° is due to finite Knudsen number effects.

2
v
<CpT( cpT— 2) uizvjz(n7)> =0 (39)
for any value ofn, it can be shown that
5
BOZEN(kBT)3. (40)

The next term in the series is

PHYSICAL REVIEW E 68, 036701 (2003

vr/a
N

(@

(Va)

D,v/a’

(Va)®

FIG. 5. (a) Normalized kinematic viscosityr/a? and (b) ther-
mal diffusivity Dr7/a® for model A as functions of X/a)? for
collision anglea=90°. The bullets are data obtained using Green-
Kubo relations. The unfilled boxe$) are data for the kinematic
viscosity obtained in Ref.8] by fitting the one-dimensional veloc-
ity profile of forced flow between parallel plates. The solid line is
the theoretical prediction, Eq$34) and (48). Parametersi/a
=32, =1, andM =20. The data were obtained by time averaging
over 75000 iterations.

Bﬁg(v?v?(r)viz(ﬂviz% %(v?( Vi T)vig).
(41

In Appendix A it is shown using quaternion algebra that

5
BlziN(kBT)3®, (42
where
o2+ 2ely 2|, T @3
3 3M M| 15M3
and
y1=(1+2c), (44)
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2 metric series. Furthermore, direct calculations in two dimen-
Y2=g(c— 1)(8c—3), (45 sions[3] and for model B(see Sec. IV A 1suggest that this
remains true in general. Assuming this is true here, the diag-
onal contributions to the thermal diffusivity are given by
73:_(1_0)2- (46) 5
5

Br=5N(kgT)%0", (47)
. . . . 2

Using quaternion algebrésee Appendix B it can be
shown in theM —co limit that the sum in Eq(37) is a geo-  so that carrying out the sum in E(B7),

1 S
—+ @l
2t )

_keT 7 ( 75M3cs@(al2)
2 \2{-64+5M(6+M[—3+5M])+8(8+5[—2+M]M)cog a)} -1

1
M2

Data for the normalized thermal diffusivitpr7/aT as a n-1n-1

function of (\/a)? for a=90° andM =20 are compared (HM=-r(0=7> > (vi(jn-vi(kn). (52
with Eq. (48) in Fig. 5(b). The agreement is excellent. Figure 1=0 k=0

6(a) contains a plot of the various contributions to the time

dependent correlation functiof2(0)I5(t))/5N(kgT)3, and  The sums can be rewritten as

Fig. 6(b) shows the corresponding data for the time depen-

dent thermal diffusivity fora=30° (filled symbols and « n-1n-1
=150° (unfilled symbol$. Note that for large collision 2 2 (vi(j7)-vi(k7))

angles, stress correlations decay very rapidly, so that only the j=0 k=0

first couple of terms in the time series are needed. Finally, n—1 n-2 n-1

the normalized thermal diffusivityp;/7kgT is plotted as a — 20 NI
function of the collision angle in Fig. 7 foM =5 andM jz'o v (]T)>+2j20 k=12+1 (vitim)-vi(km)
=20. Again, the results are in excellent agreement with 1

theory. It should be emphasized that only the diagonal con- _ . .

tributions toD; have been considered here. Although off- =nd kBT+2,Zl ii(0)-vi((n=j)7)). (53)
diagonal contributions to the thermal diffusivity are gener-

ally small, better agreement can be achievedNbe10 if Expression(53) can be evaluated using the same approxima-
they are included. In particular, these off-diagonal contribu-, P 9 pp

tions areO(1/M?). They have been calculated explicitly in tions as were used to determine the viscosity and thermal

two dimensions in Ref.3], and for model B in Sec. IVA 2 diffusivity. Settingd=3 and using Eq(16), one gets
of this paper.

DT: kBT T

(48)

1

> +0

. (49

:kB T

5 4

2+ 3(4 1
%2;(3) M(_ - —CS(?(a/Z)

(vi(0)-vi(k7))=3kgT X, (54
3. Self-diffusion coefficient

The self-diffusion constard of particlei is defined by where

1 - _ _
D=t|mﬁ<[fi(t)—fi(0)]2>- (50) v=[2coga)+1]/3—2[coga)—1]/(3M). (55

Substituting Eq(54) into Eq.(53), one gets
The position of the particle at time=nr is

-1 1 1) 1 keTr[1+7y
=i i =i = -7
(O=r(0)+ 73 vi(kn), (51) D=lmkeTr 5+ 2 i > |1y ©9
<
so that or, explicitly, as a function o,
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1.2 T T T T ‘ 15
(a)
! 12 ¢
“~ 0.8 J
'_cn
=
Z 06 1
©
A
= 04 :
g
[}
v 0.2
[aY]
0 b pe - e . . : -4
[/' 110 130 150
02, 5 10 15 20 25 30 a
it FIG. 7. Normalized thermal diffusivitid ; / 7kgT for model A as
a function of collision angler. The lines are the theoretical predic-
10 . ' tion, Eq. (48). The data were obtained by time averaging over
75000 iterations. Parameters/a=32, N/a=2.309, r=1, and
M=5 (O) andM =20 (®).
(b)
ence frame. The plarne=h represents a cell boundary in the
6| | unshifted frame. Consider now the momentum transfer in the
z direction, and assume a homogeneous distribution of par-
';m ticles in the cell. The mean velocities in the lower and upper
5 partitions are
a
M
2 1 1
U=y IR (58)
1i=1
and
2, 10 20 30 1
Up=—— Vi, 59
Ve VR (59

FIG. 6. (@ Normalized correlation functions
2(15(0)15(t))/5N(kgT)® for model A as a function of time for
=30° (filled symbol3 and «=150° (unfilled symbol$. For «
=30°, the kinetic, rotational, and mixed contributions are indicated
by ®, B, and<«, respectively. Forr=150°, the kinetic, rotational,
and mixed contributions are indicated ky, [, and <, respec-
tively. (b) Normalized time dependent thermal diffusivity,
D+(t)/7kgT. Symbols are the same as in p&sd. Parameters:
L/a=32, N/a=2.309, =1, andM =20. The data were obtained
by time averaging over 75 000 iterations.

respectively, wheré1 ;=M (a—h)/a andM,=Mh/a. Thex
component of the momentum transfer resulting from the col-
lision is

15

3
1-coqaw)

D/tkgT

. kBT’T
2

M
M_l)l}. (57)

The diffusion coefficient was measured fdr=5 and 20 and
N a=2.309; the results are shown in Fig. 8.

B. Shear viscosity at small mean free path approximation %0 50 70 90 110 130 150
Simple kinetic arguments can be used to calculate the c
rotational contribution to the kinematic viscosit#]. Con- FIG. 8. Normalized self-diffusion constabt 7kgT for model A

sider a collision cell of linear dimensianand divide the cell  as a function of collision angler. The lines are the theoretical

by the planez=h. Since the particle collisions occur in a prediction, Eq(57). The data were obtained by time averaging over
shifted cell coordinate system, they result in a transfer of75000 iterations. Parameters/a=32, A/a=2.309, r=1, and
momentum between neighboring cells in the unshifted referMm=5 (l) andM =20 (@).

036701-8



TRANSPORT COEFFICIENTS FOR STOCHASTL. . . PHYSICAL REVIEW E 68, 036701 (2003

approximation for the viscosity in this regime. The system-
atic deviations for smalkk are due to kinetic contributions
(see Fig. 4.

IV. MODEL B: ROTATION AROUND
ORTHOGONAL AXES

The second collision rule we will consider involves rota-
tions about one of three orthogonal axes. In the implementa-
tion considered here, we take these axes to be,thieandz
axes of a Cartesian coordinate system. At each collision step,
one of these axes is chosen at random, and a rotation by an
angle* « is then performed about this axis. The signois
chosen with equal probability. Rotations about xhg, andz
axes are described by the rotation matrices

FIG. 9. Normalized kinematic viscosity for model A as a func-
tion of collision anglea for small mean free pathy/a=0.0361. 1 0 O c 0 s
The plot shows both the rotationa®() and the total l) contribu-

0 L L L L
30 60 90 120 150 180
o

tions to the viscosity. The solid line is the theoretical prediction, Eq. My=| 0 ¢ sJ, My= 0 10],
(34). The data were obtained by time averaging over 75 000 itera- 0 —-s ¢ -s 0 c
tions. Parameterd:/a=32 andM =20. The open square§]( are
data for the total kinematic viscosity obtained in Re]. c s O
Ml M Z: -S c O 1 (66)
Apy()=2, [viult+7)=vi (D] (60) 0 01

wherec= cos() ands= *sin(«), depending on the sign of
Using Eq.(20) and averaging over the orientation of the 4. In the following, we will refer to this collision rule as
vectorR then yields model B. The rate of approach to thermal equilibrium for this

model is almost identical to that of model A. This can be

seen in Fig. 2, which shows the angular dependeneg ¥l

Ap()= 3 (e 1)My(Ug,—Uy). ®D for two values ofz/a, 1.15 @) and 0.0361 (). As in two
] dimensions, the relaxation rate is essentially independent of
SinceMu=Mu; +Mus, temperature.

5 h h ~An advantage of_ mode_l B is that the analytical calcula-
Apy(h)= 5(1_C)M(U2x_ul,x)_(l_ _>, (62)  tions are comparatively simple and resemble those for the
a model in two dimensions. However, as will be shown in the
following section, there are new finite cell size corrections
which are unique to this collision rule. As will be shown,
they occur because rotations are performed about one of the
symmetry axes of the cell lattice.

so that and averaging ovler—which corresponds to averag-
ing over the random grid shift—one has

1
(Ap)=g(1=C)M(Uzy—Uyy). (63)
A. Large mean free path approximation

Since the dynamic viscosity is defined as the ratio of the 1. Shear viscosity

tangential stres®; to duy/9z, we have For large mean free path, we proceed as in Sec. lll A 1. In

- (Apy/(a27) ~ (Apy/(aZ7) order to determine the shear viscosity in this regime, we need

T _(uzlx—ul,x)/(aIZ) , (64)  to evaluate temporal correlation functions of the type

so that the kinematic viscosity= »/p is A,= ; (vix(0)Xiy(0)vjx(NT)v}y(NT)). (67)
a2
v=1g l1-coda)] (65 A, has the same value as in model A. Fot0, there are
again both diagonalj&i) and off-diagonal [#1) contribu-
in the limit of small mean free path. tions toA,,. Using the definition of the rotation matrices, Eq.
We have measured both the rotational and total contribut66), it is easy to show the diagonal contributionsAg

tions to the kinematic viscosity for/a=0.0361. The results « 5
are shown in Fig. 9. As can be seen, multiparticle collisions A1=N(kgT)"¢1, (68)
provide the dominant contribution to the viscosity for small
mean free path. Furthermore, H&5) provides an accurate AY=N(kgT)?¢y, (69
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and vix(7)=Cvix(0) + z2,(0),
AI=N(kgT)?(5—25), (70 viy(1)=0;y(0) (78)

for rotations around thg, y, andz axes, respectively, where for rotations around thg axis, and
{1=1M+c(1—-1/M) and {,=s(1—1/M). Averaging over
the three rotation axes, it follows that the total diagonal con-
tribution is

vix(7)=Cvix(0) +zy(0),
Uiy(T):CUiy(o)_ZSJix(o) (79

E(A’{+A‘1’+A§) =N(kgT)%g, 72 for rota.tions around.the axis, wherg as before, ands are
3 the cosine and the sine of the rotation anglez= +1 speci-
fies the sign ofw.
where When calculatingz,, we have to consider rotations about
s the three symmetry axes separately. As can be seen from Egs.
{p=(241+ 10513 (72 (79), rotations about the axis mix both thex andy compo-

] o . nents of the velocity, so that the situation is similar to that
~ The off-diagonal contributions, which come from par- considered in Sec. Il B 4 of Reff3]. Although the same tech-
ticlesj which are in the same cell as parti¢latt=0, can be niques can be used to evalualé as in Ref.[3], we know
evaluated in a similar fashion. The result is from the results of that paper that there are no finite cell size
corrections in this case.

The situation is different for rotations about tkeandy
axes. For rotations about theaxis, one has

N(kgT)*(M—1) g, (73
where 7g=2c(c—1)/(3M?), so that

A;=N(kgT)?[{g+(M—1)7g]. (74 TZC)i:kBTZ (A&iy(0)A &y (7)), (80)

The off-diagonal contribution is three times smaller than inSo that(A &, (0)A&, (7)) needs to be evaluated. Using the
two dimensiong3]. Note that the leading diagonal contribu- 5 0a¢h described in Sec. 1B 4 of REZ], we have
tion is O(1), while that of the off-diagonal contribution is ’

o(1/m). a [(n+1)a—yql/7
The behavior over longer time intervals can be analyzed 72C§/NkBT=af dy, > f dvy
in a similar fashion, and as for model A, one finds 0 nm=== J(na-yg)/r
by
An=N(KsT)2[ 25+ (M~ 1) 75", 79 % | " dvanm ww o), 8D
0
so that where all velocities are at equal time, so that we have
dropped the argumer{0). Note that the average over
keT 7( 1+ g+ 2 ne ( .
=T L 715) WB(C,a_). (76) =1 has already be performed. The limits on the inner inte-
2 \1-{sg— s T gral are
The last term on the right hand side of E@®) is a finite cell bo=[(m+n)a—y,—vy(1+c)7l/(s7) (82)

size correction. In two dimensions and for model v,
=a?/(127) [3]. As discussed in Sec. Il A1, it occurs be- and

cause the substitutioh&;, = 7v;, in the first term on the sum

on the right hand side of Eq8) is not precisely correct. In b;=[(m+n+1)a—yo—vy(1+c)7]/(s7). (83)
the present case, however, there are additional corrections

because the rotation matrices always leave one component %vX) is the Boltzmann distribution,

the velocity unaltered. As a result, there are contributions to 1 b2
C, that have projections o€,. wW(vy) = exp{ X } (84)
Finite cell size correctionin order to simplify the discus- § V2mkgT 2kgT

sion of the finite cell size corrections, the following calcula- ) o )
tions are performed in the limi —co. In this case, the time Equation(81) looks very similar to Eqs18) and(41) in Ref.

evolution equations reduce to [3] and can be evaluated in an analogous fashion. We there-
fore only sketch the main steps of the analysis, referring to
vix(1)=vix(0), Ref.[3] for details.

The Poisson sum formuld.8]
Uiy(T)ZCUiy(O)+23)iz(o) (77 ks % w
2 gm= > fﬁmgw)e*“m‘ﬁdqs (85)

for rotations around th& axis, n=o
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is first used twice to transform the double sum owveandn 2
in EqQ. (81). Partial integrations over, andv, are then per-

formed. The temperature independent part of the resulting
expression can be determined by evaluating iren=0 15

contribution of the remaining sums. The final result of these
calculations is

|_
X1
2 €
a >
T*Ci/NkgT=— 75+ 0(kgT). (86)
0.5 |
For rotations about thg axis, one has

7C=kaT c2, (A&y(0)A&y(7)). (87) 05

In this case, viy(7)=v;y(0), and the calculation of
(A&, (0)A¢ (7)) can be performed using the methods out-
lined above. The final result is

FIG. 10. Various contributions to the normalized shear viscosity
vl 7kgT for model B as a function of the rotation angleat large
mean free pathy/a=1.15. The symbols are simulation data for the
2 kinetic contribution (<), the rotational contribution[{), and the
TZC{/N ksT=—C-=+O(KgT). (88) total viscosity @). The so_lld line is th(_e 'Fheoretlcal prediction, Egs.
12 (76) and (90). The viscosity has a minimum ai=120°, as pre-

. . . . dicted by theory. The data were obtained by time averaging over
Averaging over all three different rotation axes, it follows 40 0gg iterations. Parametetsta=32, r=1, andM = 20.

that

5 a’ (Ma)? for M=20 anda=90°. Note, in particular, that both
7°C1/NKgT =~ 2(1+¢)+O(kgT). (89 the M dependence of the viscosity as well as the size of the
finite cell size correction—qgiven by the intercept—are accu-
Adding this to the contribution fronC,, the final approxi- rately described by theory.
mation for the finite cell size correction for model B is

) 2. Thermal diffusivity

) a? c
wg(c,a’/1)==|1— =

> 5 (90 The kinetic part of the reduced flux for the calculation of

the thermal diffusivity is given by Eq(38), where again,
Although this result is obtained fofl — <, and neglects con- B,=(1"(2,0)|1€"(z,n7)). The calculation of the thermal
tributions fromC,, with n=2, it reproduces the behavior of diffusivity simplifies considerably if we utilize relatio(89)
the viscosity over rotation angles between 10° and 140° anénd the following relations:
N a>0.5 with an error smaller than 2%.
For M —, the off-diagonal contributions to the viscosity
vanish, and the kinematic viscosity has a minimumaat

=120° for\/a— . For this value ofa, 06 r
5 1 5/(a\?
Vmin= TKgT g+7—2 Bk (91 ol
= O
x
This is significantly smaller than the minimum value given in <

Eq. (35) for model A, but still larger than the minimum value

in two dimensions, Eq(36). 0.2 r
Figure 10 contains a plot of the normalized kinematic

viscosity v/(7kgT) as a function ofe for N/a=1.15 and

M=20. Data for the the kineticX) and rotational [0) 0 . ‘ ‘ . .

contributions, as well as the tota@®( viscosity, are plotted 0 20 40 60 80 100

and compared with the theoretical prediction, Eq®) and M

(_99)' The a,greeme“_t IS _exce”ent' Note, ',n par_t'cqlar' that the FIG. 11. Various contributions to the normalized shear viscosity

finite cell size contribution to the total viscosity is not N€g- .,/ -k T for model B as a function ok for large mean free path,

ligible, particularly for large rotation angles. In Fig. 11, the \/3=1.15 ande=90°. The symbols are simulation data for the

normalized viscosity/(7kgT) is plotted as a function d#l  kinetic contribution ), the rotational contribution({), and the

for «=90° andA/a=1.15. Again, the agreement between total viscosity @). The solid line is the theoretical prediction, Egs.

theory and simulation is excellent. Finally, Fig. 12 shows the(76) and (90). For this value of\/a, rotational contributions to the

normalized total shear viscosityr/a? as a function of total viscosity are negligible.
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FIG. 12. Shear viscosity for model B as a functionxgf for

a=90° andM =20. The symbols are simulation data for the kinetic
contribution () and the total viscosity@®). The slope of 0.297 is
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5
BnZEN(kBT)3[774+(M_1)')’5]na (99

so that the thermal diffusivity is
D _kBTT 1+'}/'}/4+(M_1)'}/5
T2 [1-yy=(M=1)ys)

Note that the off-diagonal contribution is of ordeM; it is
therefore less important than for the shear viscosity.

(100

3. Self-diffusion coefficient
The diffusion constant can be determined as in
Sec. Il A 2 for model A. The final result is
kBT’T
2

1+vy
1-vy

: (10D

in excellent agreement with the theoretical prediction, 0.2895Which is the same as for model[&ee Eq.(57)]. It is inter-

which follows from Eqs(76) and(90). Note that forM — oo, theory
predicts a slope of 0.25; W corrections are therefore important

even forM =20. Parameterd:/a=32, 7=1.

vi(t)
Gl

2
<<CpT— Uzﬂ)v“> =3(kgT)?, (93

|

By is the same as in model A, namely,

v$> =0 for m=1,2,and 3, (92

and

2(t
cp,T— v'zﬁ)vivﬁ» =(kgT)3. (94)

5
BO=EN(kBT)3. (95)

B, (including off-diagonal termjsis

5
BlZEN(kBT)S[ YYa+(M—=1)ys], (96)
wherey is given given in Eq(55),

ya=[1+2({5+ 513, (97)

where{; and {, are defined in the text following Eq70),
and

16 (1—c)?

YV5TIETME (99)

esting to note that

Dy
— —1 forM—oo,

5 (102

for both models A and B as well as in two dimensions.

B. Small mean free path approximation: Shear viscosity

A detailed calculation of the shear viscosity in this limit
can be performed following the arguments used in Sec.
Il A 2 for model A and in Ref[3] for two dimensions. How-
ever, for model B, the following simple argument gives the
same result. Consider the momentum transfer across a plane
perpendicular to the axis. Only rotations about theandy
axes produce a nonzero momentum transfer, and since the
momentum transfer—and therefore the resulting viscosity—
from each of these rotations is equal to that calculated two-
dimensiond 3], one finds that

a2
V3D:§V2D:E[1—COE{CY)]- (103
Note that this expression is identical to the one obtained for
model A. Data for thew dependence of the normalized vis-
cosity, v7/a?, at\/a=0.0361 are plotted in Fig. 13. Note, in
particular, the importance of kinetic contributions to the vis-
cosity for smalla, even for this small value of/a.

V. SUMMARY

In this paper we have presented a comprehensive analyti-
cal and numerical study of the stochastic rotation dynamics
model for fluid dynamics in three dimensions for two colli-
sion rules. The first collision rulémodel A consists of a
rotation by an angler about a randomly chosen axis. It was
introduced in Refs[4] and[5] and used in Ref8] to study

The coefficientsB,, form a geometrical series, because channel flow and flow about a spherical object. A new, sim-
successive rotations are uncorrelated. This can be seen bler collision rule (model B, in which collisions involve

first performing an average over the rotation angle treh

performing the thermal average. In particular,

rotations by an angle- « about one of three orthogonal axes,
was also discussed. Calculations involving this model are
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0.15 ‘ , - ' ' nions. Finally, simulation results for the viscosity, thermal
diffusivity, and the self-diffusion coefficient for a range of
simulation parameters were presented and compared to the
analytical approximations. In all cases, agreement was excel-
lent; furthermore, the comparisons showed that the finite cell
size corrections described above are necessary in order to
achieve quantitative agreement.

01 ¢

vi/a

0.05 | ACKNOWLEDGMENTS

Support from the National Science Foundation under
Grant No. DMR-0083219, the donors of The Petroleum Re-
search Fund, administered by the ACS, the Deutsche Fors-
0 20 80 90 120 150 180 chungsgemeinschaft under Project No. 214283, and Sonder-

o forschungsbereich 404 is gratefully acknowledged. We thank

E. Allahyarov and G. Gompper for providing results of their
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function of the rotation anglex for small mean free pathy/a
=0.0361. The bullets are simulation data and the solid line is the
theoretical prediction, Eq.103), for the rotational contribution to APPENDIX A
the kinematic viscosity. The deviation of the data from the theoret- The calculation of correlation functions of the reduced
ical prediction fora<<30° is due to the increasing importance of the fluxes can be simplified by rewriting the time evolution
Kinetic contribution to the viscositysee Fig. 10 The data were equations for the velocities using quaternions. Two arbitrary

E?;za;n;; fi/ltlrgida/irggmg over 40000 iterations. Parametersq.uatemionSIP and(), are defined by

. : . . N P=(p,P), (A1)
particularly simple, since the rotations about the individual

axes are very similar to those in two dimensions. In particu- 0=(9,Q) (A2)
lar, it was possible using this model to calculate the off- e

diagonal contributions to the thermal diffusivity; a similar where{p,q} are the scalar parts ai®,Q} the correspond-

calculation for model A was prohibitively tedious. Since bothing vector parts of the quaternions. If the scalar part is zero,

models are comparable with regard to their computatlona,ghe quaternion is an ordinary vector and is called as a “pure”

e_fficie_n_cy, l.e., relaxation rates, range of visposities_, _etc., th%]uaternion. The multiplication rule of two quaternions is
simplicity of model B can have advantages in specific appl"given by[19]

cations.
Discrete time Green-Kubo relations originally derived in PO=(pg—P-Q, pQ+qP+PxQ). (A3)

Refs.[1] and[2] were used to determine explicit expressions ‘

for the shear viscosity, the thermal diffusivity, and the self-}; fo|iows that for two pure quaternionsi=(0,R) and S

diffusion constant. The kinetic, collision, and mixed contri- =(0,9),

butions to the transport coefficients were analyzed individu-

ally, and no assumptions regarding molecular chaos were RSR=(0,~ |R|%S). (A4)

made. This enabled us to determine correlation induced finite

cell size corrections to the shear viscosity which persist evepefining

in the limit of large mean free path. In R¢8] it was shown

that these corrections can, under certain circumstances, such V(t)=(0v(t)), (A5)
as collisions witha=90° and large particle density, provide
the dominant contribution to the shear viscosity in two di- U=(0uy), (AB)

mensions. In three dimensions, we showed here that correc-

tions of this type, while not entirely negligible, are rather gnd

small for model A. However, as discussed in Sec. IV A 1, for

model B, where collisions involve rotations about one of V'=(0Vv)=V(0)-T. (A7)

three previously defined orthogonal axes, there are additional

finite cell size corrections that make non-negligible contribu-The time evolution equation for the velocities, Efj6), can

tions to the viscosity for a wide range of densities and rotabe written as

tion angles. It is important to note that corrections of this

type are only important for the shear viscosity. V(r)=AV'A* + 1, (A8)
It was also shown how quaternion algebra can be used to

simplify calculations of kinetic contributions to the transport where

coefficients. In particular, the appendixes describe the calcu- R

lation of the thermal diffusivity in model A using quater- A=(codq a/2),R sin(al2)). (A9)
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The first term in Eq(A8) corresponds to the rotation of the LT L,

relative velocity vector around the random akisUsing the Bl:T<{Ux+Uy+Uz+2“§x[Ux( 7) = Ux]

multiplication rule given in Eq(A3), it is easy to see that Eq.

(A8) is equivalent to Eq(16). Similarly, using Eq.(A4) it T2uglvy(7)—vy]+2ug[v,(7) —v JJvAT)vy,)

can be shown that (A18)
(V3(1),= —vA(Pv (7). (A10) _5(keT)?

: 10
(1+20)+ 37 (1-¢)

12

Dropping the index, B, given by Eq.(41) can be written as

16 ) 4
_W(l_C) l—m ) (Alg)

B, 1 T,
N = 7N nv) === (wi(nv()vs), which then yields Eq(42) when substituted into EGA11).
Bi B’{ (All) APPENDIX B
imi U Eq.(A it-
or by using Eq(AL0), as ten”;;he limit M —~, U—(0,0), and Eq.(A8) can be wri
V(7)= AVA*, (B1)

ﬂ:l«\ﬁ(q-)) v (vz+vz+v2)>— £<(V3(7')) vy)
N 4 72\ Ux TPy T Pz 2 e where we have dropped the superscript™so that V

(Al2)  =V(0). Thecube ofV(7) is then simply

. N , V3(r)=AV3A*, (B2)
Using the multiplication rule for quaternions, and the fact

that AA* =1, it can be shown that where

) V3=(0,—|v|?v). (B3)
V3(7)=A(V)3A* + T2AV'A* + AVIA* UAVTA*
This means that’3(7) is the rotation of the vectot-|v|?v

around a random axig. Equations(B2) and (B3) can be
used to evaluate the second term in E&fl1), namely,

+A(V))2A* U+ U3+ AV A* U2+ UAVTA* U, (A14) 2B}
" i
E,= C_T :<UZ(T)Uz( 7)U2>: - <(A\‘/3A* )ZUZ>’ (B4)
p

+UA(V")2A* (A13)

Simplifying terms and using energy conservation,
which can be shown to equal

2 co +1
S [0l = w,12=0, (A15) £,=5(0 T 2T (B5)
Similarly, fort=2r,
one obtains
V(27)=A"V(7)A'*, (B6)

R where prime denotes a different random vector then in Eq.
81:Z<{Ux+”y+vz+2“§x[vx( 7) vyt 2uglvy(7)—v,] (A9). Using energy conservation and the commutator

+2Ug[v (1)~ v, [N vi+vi+ Vv, (T)v,) (A16) [A",V]=[0,2 sifa/2)R’' X V], (B7)
V3(27) can be written as
3 —
(e [35(1+2c)+ s ”{31—1&; Vi(2r)= - [(2n)]2¥(27) ©9)
=—|v(7)|2A"V(1)A"* (B9)
20 576/1—c)?
+7(2c-1) S (A17) =—|V(7)|A(VA’ +[A’, V) A'* (B10)

o = —|v(7)[2V—|w( T)|2( 0,2 singfz’ xv) A, (B1D)
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so that

2coga)+1

3 (B12)

(\\/3(27-))22 - 02( TV A7)

Since
E2§<vz(27)vz(27')vz> =— ((Vs(ZT))ZvZ>, (B13)

one gets finally,

PHYSICAL REVIEW E 68, 036701 (2003

2coga)+1
3

2 coga)+1]?
—3 |
(B14)

2= E;=5(kgT)?

so that the term®;, form a geometric series. It can also be
shown that theB,, are terms in a geometric series, with the
same angular dependence. The difference of these two terms
is therefore also a geometric series.
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