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Transport coefficients for stochastic rotation dynamics in three dimensions
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Explicit expressions for the transport coefficients of a recently introduced stochastic model for simulating
fluctuating fluid dynamics are derived in three dimensions by means of Green-Kubo relations and simple
kinetic arguments. The results are shown to be in excellent agreement with simulation data. Two collision rules
are considered and their computational efficiency is compared.
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I. INTRODUCTION

In a series of recent papers@1–3#, a discrete-time projec
tion operator technique was used to derive Green-Kubo r
tions for the transport coefficients of a new stochas
model—which we will call stochastic rotation dynamics—
for simulating fluctuating fluid dynamics@4,5#. Explicit ex-
pressions for transport coefficients in two dimensions w
derived, and it was shown how random shifts of the collis
environment could be used to ensure Galilean invariance
arbitrary Mach number and temperature. In this paper,
extend our analytical and numerical analysis to three dim
sions and consider two distinct collision rules. Expressio
for the transport coefficients are derived and compared w
simulation results. No assumptions are made regarding
lecular chaos, and the correlations that can develop at s
mean free path are explicitly accounted for. The only a
proximation we make is to neglect fluctuations in the num
of particles in the cells which are used to define the collis
environment. This amounts to neglecting terms of or
e2M, whereM is the average number of particles in a ce
and is therefore justified in all practical calculations, whe
M>5.

In the stochastic rotation dynamics~SRD! algorithm, the
fluid is modeled by particles whose position coordinatesr i(t)
and velocitiesvi(t) are continuous variables. The system
coarse grained into cells of a regular lattice, and there is
restriction on the number of particles in a cell. The evoluti
of the system consists of two steps: streaming and collis
In the streaming step, all particles are simultaneously pro
gated a distancevit, wheret is the value of the discretize
time step. For the collision step, particles are sorted i
cells, and they interact only with members of their own ce
Typically, the simplest cell construction consisting of a h
percubic grid with mesh sizea is used. As discussed in Ref
@1# and@2#, a random shift of the particle coordinates befo
the collision step is required to ensure Galilean invariance
our implementation of this procedure, all particles are shif
by thesamerandom vector with components in the interv
@2a/2,a/2# before the collision step. Particles are th
shifted back to their original positions after the collision.
we denote the cell coordinate of the shifted particlei by j i

s ,
the dynamics is summarized by
1063-651X/2003/68~3!/036701~15!/$20.00 68 0367
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r i~ t1t!5r i~ t !1tvi~ t !, ~1!

vi~ t1t!

5u@j i
s~ t1t!#1v@j i

s~ t1t!#•$vi~ t !2u@j i
s~ t1t!#%,

~2!

where v(j i
s) denotes a stochastic rotation matrix, a

u(j i
s)[(1/M )(kPjsvk is the mean velocity of the particles i

cell j s. All particles in the cell are subject to the same ro
tion, but the rotations in different cells are statistically ind
pendent. There is a great deal of freedom in how the rota
step is implemented, and any stochastic rotation matrix c
sistent with detailed balance can be used. The dynamic
the SRD algorithm is explicitly constructed to conser
mass, momentum, and energy, and the collision proces
the simplest consistent with these conservation laws.
algorithm is Galilean invariant, there is anH-theorem, and it
yields the correct hydrodynamics equations with an ideal
equation of state@2,4#. SRD has been used to study flo
around solid objects in both two@6,7# and three@8# dimen-
sions, dilute polymer solutions@9#, binary mixtures@10,11#,
amphiphilic mixtures@12–14#, colloids @15,16#, and cluster
structure and dynamics@17#.

In two dimensions, the stochastic rotation matrixv is
typically taken to be a rotation by an angle6a, with prob-
ability 1/2. Analytic expressions for the transport coefficien
in this case were derived in Refs.@1–3# and shown to be in
excellent agreement with simulation results. In three dim
sions, one collision rule that has been discussed in the lit
ture @4,5,8# consists of rotations by an anglea about a ran-
domly chosen direction. All orientations of the random ax
occur with equal probability. Note that rotations by an ang
2a do not need to be considered, since this amounts
rotation by an anglea about an axis with the opposite or
entation. The viscosity of this model has been measured
ing a Poiseuille flow geometry in Ref.@8#. Analytical expres-
sions for the transport coefficients in this case are o
available in the limit of large mean free path,l/a→`, and
for one rotation anglea590° @5#. In the following, we will
refer to this collision rule as model A. Another, computatio
ally simpler collision rule, which we will refer to as model B
involves rotations about one of three orthogonal rotat
©2003 The American Physical Society01-1
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axes. In the implementation considered here, we take the
bex, y, andz axes of a Cartesian coordinate system. At ea
collision step one of these three axes is chosen at rand
and a rotation by an angle6a is then performed, where th
sign is chosen at random. This procedure is fast and eas
implement; furthermore, only six different rotation matric
are needed, which are sparse and contain fixed elemen
1, 6sin(a), and cos(a). Our simulations have shown tha
both collision rules lead to a rapid relaxation to thermal eq
librium characterized by the Maxwell-Boltzmann veloci
distribution.

The outline of the paper is as follows. In Sec. II we brie
summarize the Green-Kubo relations for the transport co
ficients. Sections III and IV contain detailed descriptions
the two collision rules, as well as analytical and numeri
calculations of the shear viscosity, thermal diffusivity, a
self-diffusion coefficient at both large and small mean fr
paths. The work is summarized in Sec. V.

II. HYDRODYNAMICS

The transport coefficients of a simple liquid are the kin
matic shear and bulk viscosities,n and g, and the thermal
diffusivity coefficient DT . Explicit expressions for the
asymptotic~long-time limit! shear and bulk viscosities an
thermal diffusivity of the SRD algorithm were derived
Ref. @2# using a projection operator technique. In particul
it was shown that the kinematic viscosities can be expres
in terms of the reduced fluxes ink space as

nS db«1
d22

d

kbk«

k2 D 1g
kbk«

k2

5
t

NkBT
( 8
t50

`

^I 11b~ k̂,0!uI 11«~ k̂,t !&, ~3!

while the thermal diffusivity is given by

DT5
t

cpNkBT2 ( 8
t50

`

^I d12~ k̂,0!uI d12~ k̂,t !&, ~4!

whered is the spatial dimension,cp5(d12)kB/2 is the spe-
cific heat per particle at constant pressure, and the prime
the sum indicates that thet50 term has the relative weigh
1/2. Here and in the following we have set the particle m
equal to 1. The thermal conductivityk is related toDT by

k5rcpDT . ~5!

The reduced fluxes in Eqs.~3! and~4! are~see Refs.@2,3# for
details!

I 11b~ k̂,t !5
1

t (
i

S 2@v ib~ t !k̂•Dji~ t !

1Dv ib~ t !k̂•Dj i
s~ t !#1

t k̂b

d
v i

2~ t ! D , ~6!
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I d12~ k̂,t !5
1

t (
i

S 2F @v i
2~ t !/22cvT# k̂•Dji~ t !

1
1

2
Dv i

2~ t !k̂•Dj i
s~ t !G1tkBTk̂•vi~ t ! D , ~7!

wherecv5d kB/2 is the specific heat per particle at consta
volume of an ideal gas,Dv j

25v j
2(t1t)2v j

2(t), Dji(t)
5ji(t1t)2ji(t), and Dj i

s(t)5ji(t1t)2j i
s(t1t), where

ji(t1t) is the cell coordinate of particlei at time t1t and
j i

s(t1t) is the corresponding shifted particle cell coordina

SinceDr i(t)5tvj (t), I 1( k̂,t)50 to this order ink.

1. Shear viscosity

In three dimensions, the shear viscosity can be obtai
if, for example, one takesk̂ in the z direction andb5e
51, in the Green-Kubo relation, Eq.~3!, so that

n5
t

NkBT
( 8
t50

`

^I 2~ ẑ,0!uI 2~ ẑ,t !&. ~8!

There are two contributions to the reduced fluxes, nam
kinetic and rotational, so that

I 2~ ẑ,t !5I 2
kin~ ẑ,t !1I 2

rot~ ẑ,t !, ~9!

where

I 2
kin~ ẑ,t !52

1

t (
i

v ix~ t !Dj iz~ t ! ~10!

and

I 2
rot~ ẑ,t !52

1

t (
i

Dv ix~ t !Dj iz
s ~ t !. ~11!

Contributions toI 2
kin come from the streaming step, where

the collisions and shifts contribute toI 2
rot . There are corre-

sponding kinetic, rotational, and mixed contributions to t
shear viscosity.

2. Thermal diffusivity

Similarly, settingd53 and takingk̂ in the z direction in
Eq. ~4!, one has

DT5
t

cpNkBT2 ( 8
t50

`

^I 5~ ẑ,0!uI 5~ ẑ,t !&. ~12!

Again, the reduced flux can be divided into the kinetic a
rotational contributions, so that

I 5~ ẑ,t !5I 5
kin~ ẑ,t !1I 5

rot~ ẑ,t !, ~13!

where
1-2
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I 5
kin~ ẑ,t !5

1

t (
i

H S cvT2
v i

2~ t !

2 DDj iz~ t !1tkBTv iz~ t !J
~14!

and

I 5
rot~ ẑ,t !52

1

t (
i

1

2
Dv j

2~ t !Dj iz
s ~ t !. ~15!

III. MODEL A: ROTATION AROUND A RANDOM AXIS

As discussed in the Introduction, one choice of collisi
rule is a rotation by an anglea about a randomly chosen ax
~see Fig. 1!. This collision rule has been used in a rece
study of Poiseuille flow and flow around a spherical obsta
and was shown to yield excellent results@8#. Denote the
random vector byR̂; the postcollision velocity of a particle
at time stept1t can then be written as

v~ t1t!5uj s~ t !1v'
r ~ t !cos~a!1@v'

r ~ t !3R̂#sin~a!1vi~ t !,
~16!

where' and i denote the components of a vector that a
perpendicular and parallel to the random axisR̂; the relative
velocity vr(t)5v(t)2uj s(t).

The relaxation to thermal equilibrium is characterized
the decay rate of theH-function @2#. However, a simpler
procedure is to monitor the relaxation of the fourth mome
S45( i(v ix

4 1v iy
4 1v iz

4 ), of the velocity distribution. This was
done in Ref.@2# in two dimensions, where it was shown th
S4 relaxes exponentially to the equilibrium value given
the Maxwell-Boltzmann distribution with a relaxation tim

FIG. 1. Rotation of the vectorvr around a random directionR̂
by the anglea.
03670
t
,

e
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tR , which is essentially temperature independent. Furth
more, it was found thattR is proportional to the averag
number of particles in a cell,M, and depends strongly on th
value of the rotation anglea. It diverges approximately as
tR;a22 for a→0, since there are no collisions in this limi
and thermal equilibrium cannot be achieved. As can be s
in Fig. 2, similar behavior is observed in three dimensio
for both models A and B.

A. Large mean free path approximation

1. Shear viscosity

For large mean free path,l/a→`, the rotational contri-
butions to the reduced flux,I 2

rot( ẑ,t), in Eq. ~9! can be ne-
glected, so that the shear viscosity can be expressed as

n5
t

NkBT (
n50

`

8Cn , ~17!

where

Cn[^I 2
kin~ ẑ,0!uI 2

kin~ ẑ,nt!&

5
1

t2 (
i j

^v ix~0!Dj iz~0!v jx~nt!Dj jz~nt!&. ~18!

As discussed in Ref.@3#, except for thet50 contribution,
C0, it is a good approximation to replaceDj iz by tv iz when
evaluatingCn . In the following, we therefore first evaluaten
using this approximation, and then discuss the required
rection term.

The relevant components of Eq.~16! can be written as

FIG. 2. The normalized relaxation timetR /M of the fourth
moment of the velocity distribution,S45( i(v ix

4 1v iy
4 1v iz

4 ) as a
function of the rotation anglea for M520, whereM is the average
number of particles per cell. The data for model A (*) were o
tained for l/a51.15, while the data for model B correspond
l/a51.15 (d) and l/a50.0361 (h). Parameters:L/a532 and
t51.
1-3
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v ix~ t1t!5ujx~ t !1cFv ix~ t !2ujx~ t !

2(
b

@v ib~ t !2ujb~ t !#RbRxG
1s$@v iy~ t !2ujy~ t !#Rz2@v iz~ t !2ujz~ t !#Ry%

1(
b

@v ib~ t !2ujb~ t !#RbRx , ~19!

v iz~ t1t!5ujz~ t !1cFv iz~ t !2ujz~ t !

2(
b

@v ib~ t !2ujb~ t !#RbRzG
1s$@v ix~ t !2ujx~ t !#Ry2@v iy~ t !2ujy~ t !#Rx%

1(
b

@v ib~ t !2ujb~ t !#RbRz , ~20!

wherec5cos(a), s5sin(a), uj5(1/M )(kPjvk , and the sum
runs over all particles in the cell occupied by particlei at t
5nt. Defining

An5(
i j

^v ix~0!v iz~0!v jx~nt!v jz~nt!&, ~21!

we have

A05(
i j

^v ixv izv jxv jz&5(
i

^v ixv izv ixv iz&5N~kBT!2,

~22!

so that there are only contributions fromj 5 i . The second
term in the series is

A15(
i j

^v ixv izv jx~t!v jz~t!&, ~23!

where v jx(t) and v jz(t) are given by Eqs.~19! and ~20!,
respectively. There are both diagonal (j 5 i ) and off-diagonal
( j Þ i ) contributions toA1. Making use of the following av-
erages over the random vectorR̂:

^Rb
2&51/3 ~24!

and

^Rb
2Rb8

2 &51/1512/15db,b8 , ~25!

the diagonal contribution is found to be

^v ixv izv ix~t!v iz~t!&5~kBT!2zA , ~26!

where
03670
zA5
1

3 H Fc22s21
2

5
~c21!2G S 1

M
21D 2

12cS 12
1

M2D1
1

M S 21
1

M D J . ~27!

The off-diagonal contribution comes from particlesj which
are in the same cell as particlei at t50. This contribution is
equal to

^v ixv izv jx~t!v iz~t!&5hA , ~28!

where

hA5
2

15M2
~6c21!~c21!. ~29!

Since there areM21 off-diagonal contributions, it follows
that

A15N~kBT!2@zA1~M21!hA#. ~30!

The behavior over longer time intervals can be analyz
in a similar fashion. ConsiderA2. Following the arguments
of the last paragraph, there is a diagonal contribution prop
tional tozA

2 , and an off-diagonal contribution proportional t
2(M21)hAzA , since at each time step,M21 particles be-
come correlated with particlei, and particlej can become
correlated with particlei at either of the two time steps. Note
however, there are now additional—higher order
contributions that arise, for example, when particlej be-
comes correlated with particlek which then becomes corre
lated with particlei. It is easy to see that these contributio
carry additional factors of 1/M and are thus of higher orde
than the diagonal and direct off-diagonal contributions co
sidered above. However, these higher off-diagonal contri
tions can be summed in the geometric series

An /N~kBT!25@zA1~M21!hA#n

'zA
n1n~M21!hAzA

n211•••, ~31!

so that

n5kBTtS 1

2
1(

j 51

`

@zA1~M21!hA# j D
5

kBTt

2 S 5

S 12
1

M D @22cos~a!2cos~2a!#

21D .

~32!

As discussed above, there is an additional finite cell s
correction to this result. It arises from the fact that the su
stitution Dj iy5tv iy in C0 is not precisely correct. Rather,
can be shown that@3#
1-4
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C0'A01N
kBT

6

a

t
25N~kBT!2F11

1

6
~a/l!2G ~33!

for l@a. Using this result in Eq.~17!, the corrected kine-
matic viscosity is

n5
kBTt

2 S 5

S 12
1

M D @22cos~a!2cos~2a!#

21D 1
a2

12t
.

~34!

Note that although this additional term is, in general, ne
gibly small in three dimensions, it can dominate the viscos
in two dimensions@3#. In particular, forM→`, the viscosity
in model A takes the minimum value

nmin
A 5tkBTF 3

10
1

1

12S a

l D 2G ~35!

at a'104.48°. In contrast, in two dimensions, the minimu
is at a590° for M→`, and

nmin
2d 5

tkBT

12 S a

l D 2

. ~36!

In this limit, the finite cell size correction provides the so
contribution to the viscosity in two dimensions. The visco
ity for model A is always larger than the viscosity in tw
dimensions. In order to determine the accuracy of Eq.~34!,
we have performed simulations using a system of linear
mensionL/a532, usingt51, andM55 and 20 particles
per cell. Figure 3~a! contains a plot of the normalized corre
lation function ^I 2(0)I 2(t)&/N(kBT)2 as a function of time
for two different collision angles,a530° and 150°. As ex-
pected, the correlations decay much faster for the larger
lision angle. The resulting time dependent kinematic visc
ity is shown in Fig. 3~b!, and the normalized asymptoti
value of the viscosity,n/(tkBT), is plotted in Fig. 4~a! as a
function ofa for l/a52.309, andM55 and 20, and in Fig.
4~b! for l51.02 andM520. The agreement between th
analytical result and simulation data is excellent. Figure 5~a!
contains a plot of the normalized kinematic viscositynt/a2

as a function of (l/a)2 for a590° andM520. Also shown
in Fig. 5~a! are data (d) for the viscosity obtained by fitting
the one-dimensional velocity profile of forced flow betwe
parallel plates in three dimensions@8#. Again, the agreemen
between both sets of data and theory is excellent.

2. Thermal diffusivity

As discussed in the preceding section, for large mean
path, the rotational contributions to the thermal diffusivity
Eq. ~12! can be neglected. Furthermore, finite cell size c
rections of the type discussed in the preceding section do
03670
-
y

-

i-

l-
-

e

-
ot

occur in the calculation of the thermal diffusivity, so th
Dj iz can be replaced bytv iz . The thermal diffusivity can
therefore be expressed as

DT5
t

cpNkBT2 ( 8
n50

`

Bn , ~37!

whereBn[^I 5
kin( ẑ,0)uI 5

kin( ẑ,nt)& with

I 5
kin~ ẑ,t !5(

i 51

N S cpT2
v i

2~ t !

2 D v iz . ~38!

Since

FIG. 3. ~a! Normalized correlation functions
^I 2(0)I 2(t)&/N(kBT)2 for model A as a function of time fora
530° ~solid symbols! and a5150° ~unfilled symbols!. For a
530°, the kinetic, rotational, and mixed contributions are indica
by d, j, andb, respectively. Fora5150°, the kinetic, rotational,
and mixed contributions are indicated bys, h, and v, respec-
tively. ~b! Normalized time dependent kinematic viscosit
n(t)/tkBT. Symbols are the same as in part~a!. Parameters:L/a
532, l/a52.309, t51, andM520. The data were obtained b
time averaging over 75 000 iterations.
1-5
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K cpTS cpT2
v i

2

2 D v izv jz~nt!L 50 ~39!

for any value ofn, it can be shown that

B05
5

2
N~kBT!3. ~40!

The next term in the series is

FIG. 4. Normalized kinematic viscosityn/tkBT for model A as
a function of the collision anglea. ~a! Data for L/a532, l/a
52.309, t51, andM55 (j) andM520 (d). ~b! Data forL/a
532, l/a51.02, t51, and M520. The bullets are results ob
tained using the Green-Kubo relation, and the unfilled boxes (h)
are data for the kinematic viscosity obtained in Ref.@8# by fitting
the one-dimensional velocity profile of forced flow between para
plates. The lines are the theoretical prediction, Eq.~34!, for the
corresponding parameter values. The data were obtained by
averaging over 75 000 iterations. The deviation of the data poinh

at a530° is due to finite Knudsen number effects.
03670
B15
N

4
^v i

2v i
2~t!v iz~t!v iz&2

NcpT

2
^v i

2~t!v iz~t!v iz&.

~41!

In Appendix A it is shown using quaternion algebra that

B15
5

2
N~kBT!3Q, ~42!

where

Q5S g1

3
1

g2

3M F12
2

M G1
g3

15M3D ~43!

and

g15~112c!, ~44!

l

e

FIG. 5. ~a! Normalized kinematic viscositynt/a2 and ~b! ther-
mal diffusivity DTt/a2 for model A as functions of (l/a)2 for
collision anglea590°. The bullets are data obtained using Gree
Kubo relations. The unfilled boxes (h) are data for the kinematic
viscosity obtained in Ref.@8# by fitting the one-dimensional veloc
ity profile of forced flow between parallel plates. The solid line
the theoretical prediction, Eqs.~34! and ~48!. Parameters:L/a
532, t51, andM520. The data were obtained by time averagi
over 75 000 iterations.
1-6
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g25
2

5
~c21!~8c23!, ~45!

g35
128

5
~12c!2. ~46!

Using quaternion algebra~see Appendix B!, it can be
shown in theM→` limit that the sum in Eq.~37! is a geo-
re
e

en

t
ll

it
o
ff-
er

u
n

03670
metric series. Furthermore, direct calculations in two dim
sions@3# and for model B~see Sec. IV A 1! suggest that this
remains true in general. Assuming this is true here, the d
onal contributions to the thermal diffusivity are given by

Bn5
5

2
N~kBT!3Qn, ~47!

so that carrying out the sum in Eq.~37!,
DT5kBT tS 1

2
1(

j 51

`

Q j D
5

kBT t

2 S 75M3 csc2~a/2!

2$26415 M ~61M @2315 M # !18~815@221M #M !cos~a!%
21D ~48!

5kBT tF1

2 S 21cos~a!

12cos~a! D1
3

M S 4

5
2

1

4
csc2~a/2! D1OS 1

M2D G . ~49!
a-
mal
Data for the normalized thermal diffusivityDTt/a2T as a
function of (l/a)2 for a590° and M520 are compared
with Eq. ~48! in Fig. 5~b!. The agreement is excellent. Figu
6~a! contains a plot of the various contributions to the tim
dependent correlation function 2^I 5(0)I 5(t)&/5N(kBT)3, and
Fig. 6~b! shows the corresponding data for the time dep
dent thermal diffusivity fora530° ~filled symbols! and a
5150° ~unfilled symbols!. Note that for large collision
angles, stress correlations decay very rapidly, so that only
first couple of terms in the time series are needed. Fina
the normalized thermal diffusivityDT /tkBT is plotted as a
function of the collision angle in Fig. 7 forM55 and M
520. Again, the results are in excellent agreement w
theory. It should be emphasized that only the diagonal c
tributions to DT have been considered here. Although o
diagonal contributions to the thermal diffusivity are gen
ally small, better agreement can be achieved forM<10 if
they are included. In particular, these off-diagonal contrib
tions areO(1/M2). They have been calculated explicitly i
two dimensions in Ref.@3#, and for model B in Sec. IV A 2
of this paper.

3. Self-diffusion coefficient

The self-diffusion constantD of particle i is defined by

D5 lim
t→`

1

2dt
^@r i~ t !2r i~0!#2&. ~50!

The position of the particle at timet5nt is

r i~ t !5r i~0!1t (
i 50

n21

vi~kt!, ~51!

so that
-

he
y,

h
n-

-

-

^@r i~ t !2r i~0!#2&5t2(
j 50

n21

(
k50

n21

^vi~ j t!•vi~kt!&. ~52!

The sums can be rewritten as

(
j 50

n21

(
k50

n21

^vi~ j t!•vi~kt!&

5 (
j 50

n21

^vi
2~ j t!&12(

j 50

n22

(
k5 j 11

n21

^vi~ j t!•vi~kt!&

5nd kBT12(
j 51

n21

j ^vi~0!•vi„~n2 j !t…&. ~53!

Expression~53! can be evaluated using the same approxim
tions as were used to determine the viscosity and ther
diffusivity. Settingd53 and using Eq.~16!, one gets

^vi~0!•vi~kt!&53kBTgk, ~54!

where

g5@2 cos~a!11#/322@cos~a!21#/~3M !. ~55!

Substituting Eq.~54! into Eq. ~53!, one gets

D5 lim
n→`

kBTtF1

2
1

1

n (
j 51

n21

j gn2 j G5
kBTt

2 F11g

12gG , ~56!

or, explicitly, as a function ofM,
1-7
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D5
kBTt

2 F 3

12cos~a! S M

M21D21G . ~57!

The diffusion coefficient was measured forM55 and 20 and
l/a52.309; the results are shown in Fig. 8.

B. Shear viscosity at small mean free path approximation

Simple kinetic arguments can be used to calculate
rotational contribution to the kinematic viscosity@2#. Con-
sider a collision cell of linear dimensiona and divide the cell
by the planez5h. Since the particle collisions occur in
shifted cell coordinate system, they result in a transfer
momentum between neighboring cells in the unshifted re

FIG. 6. ~a! Normalized correlation functions
2^I 5(0)I 5(t)&/5N(kBT)3 for model A as a function of time fora
530° ~filled symbols! and a5150° ~unfilled symbols!. For a
530°, the kinetic, rotational, and mixed contributions are indica
by d, j, andb, respectively. Fora5150°, the kinetic, rotational,
and mixed contributions are indicated bys, h, and v, respec-
tively. ~b! Normalized time dependent thermal diffusivit
DT(t)/tkBT. Symbols are the same as in part~a!. Parameters:
L/a532, l/a52.309, t51, andM520. The data were obtaine
by time averaging over 75 000 iterations.
03670
e

f
r-

ence frame. The planez5h represents a cell boundary in th
unshifted frame. Consider now the momentum transfer in
z direction, and assume a homogeneous distribution of
ticles in the cell. The mean velocities in the lower and upp
partitions are

u15
1

M1
(
i 51

M1

vi ~58!

and

u25
1

M2
(

i 5M111

M

vi , ~59!

respectively, whereM15M (a2h)/a andM25Mh/a. Thex
component of the momentum transfer resulting from the c
lision is

d

FIG. 7. Normalized thermal diffusivityDT /tkBT for model A as
a function of collision anglea. The lines are the theoretical predic
tion, Eq. ~48!. The data were obtained by time averaging ov
75 000 iterations. Parameters:L/a532, l/a52.309, t51, and
M55 (s) andM520 (d).

FIG. 8. Normalized self-diffusion constantD/tkBT for model A
as a function of collision anglea. The lines are the theoretica
prediction, Eq.~57!. The data were obtained by time averaging ov
75 000 iterations. Parameters:L/a532, l/a52.309, t51, and
M55 (j) andM520 (d).
1-8
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Dpx~h![(
i 51

M1

@v i ,x~ t1t!2v i ,x~ t !#. ~60!

Using Eq. ~20! and averaging over the orientation of th
vector R̂ then yields

Dpx~h!5
2

3
~c21!M1~u1,x2ux!. ~61!

SinceMu5M1u11M2u2,

Dpx~h!5
2

3
~12c!M ~u2,x2u1,x!

h

a S 12
h

aD , ~62!

so that and averaging overh—which corresponds to averag
ing over the random grid shift—one has

^Dpx&5
1

9
~12c!M ~u2,x2u1,x!. ~63!

Since the dynamic viscosityh is defined as the ratio of th
tangential stressPzx to ]ux /]z, we have

h5
^Dpx&/~a2t!

]ux /]z
5

^Dpx&/~a2t!

~u2,x2u1,x!/~a/2!
, ~64!

so that the kinematic viscosityn5h/r is

n5
a2

18t
@12cos~a!# ~65!

in the limit of small mean free path.
We have measured both the rotational and total contr

tions to the kinematic viscosity forl/a50.0361. The results
are shown in Fig. 9. As can be seen, multiparticle collisio
provide the dominant contribution to the viscosity for sm
mean free path. Furthermore, Eq.~65! provides an accurate

FIG. 9. Normalized kinematic viscosity for model A as a fun
tion of collision anglea for small mean free path,l/a50.0361.
The plot shows both the rotational (d) and the total (j) contribu-
tions to the viscosity. The solid line is the theoretical prediction, E
~34!. The data were obtained by time averaging over 75 000 it
tions. Parameters:L/a532 andM520. The open squares (h) are
data for the total kinematic viscosity obtained in Ref.@8#.
03670
-

s
l

approximation for the viscosity in this regime. The syste
atic deviations for smalla are due to kinetic contributions
~see Fig. 4!.

IV. MODEL B: ROTATION AROUND
ORTHOGONAL AXES

The second collision rule we will consider involves rot
tions about one of three orthogonal axes. In the impleme
tion considered here, we take these axes to be thex, y, andz
axes of a Cartesian coordinate system. At each collision s
one of these axes is chosen at random, and a rotation b
angle6a is then performed about this axis. The sign ofa is
chosen with equal probability. Rotations about thex, y, andz
axes are described by the rotation matrices

Mx5S 1 0 0

0 c s

0 2s c
D , M y5S c 0 s

0 1 0

2s 0 c
D ,

Mz5S c s 0

2s c 0

0 0 1
D , ~66!

wherec5cos(a) ands56sin(a), depending on the sign o
a. In the following, we will refer to this collision rule as
model B. The rate of approach to thermal equilibrium for th
model is almost identical to that of model A. This can
seen in Fig. 2, which shows the angular dependence oftR /M
for two values ofl/a, 1.15 (d) and 0.0361 (h). As in two
dimensions, the relaxation rate is essentially independen
temperature.

An advantage of model B is that the analytical calcu
tions are comparatively simple and resemble those for
model in two dimensions. However, as will be shown in t
following section, there are new finite cell size correctio
which are unique to this collision rule. As will be show
they occur because rotations are performed about one o
symmetry axes of the cell lattice.

A. Large mean free path approximation

1. Shear viscosity

For large mean free path, we proceed as in Sec. III A 1
order to determine the shear viscosity in this regime, we n
to evaluate temporal correlation functions of the type

An5(
i j

^v ix~0!xiy~0!v jx~nt!v jy~nt!&. ~67!

A0 has the same value as in model A. FornÞ0, there are
again both diagonal (j 5 i ) and off-diagonal (j Þ i ) contribu-
tions toAn . Using the definition of the rotation matrices, E
~66!, it is easy to show the diagonal contributions toA1:

A1
x5N~kBT!2z1 , ~68!

A1
y5N~kBT!2z1 , ~69!

.
-

1-9
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TÜZEL et al. PHYSICAL REVIEW E 68, 036701 ~2003!
and

A1
z5N~kBT!2~z1

22z2
2!, ~70!

for rotations around thex, y, andz axes, respectively, wher
z151/M1c(121/M ) and z25s(121/M ). Averaging over
the three rotation axes, it follows that the total diagonal c
tribution is

1

3
~A1

x1A1
y1A1

z!5N~kBT!2zB , ~71!

where

zB5~2z11z1
22z2

2!/3. ~72!

The off-diagonal contributions, which come from pa
ticles j which are in the same cell as particlei at t50, can be
evaluated in a similar fashion. The result is

N~kBT!2~M21!hB , ~73!

wherehB52c(c21)/(3M2), so that

A15N~kBT!2@zB1~M21!hB#. ~74!

The off-diagonal contribution is three times smaller than
two dimensions@3#. Note that the leading diagonal contribu
tion is O(1), while that of the off-diagonal contribution i
O(1/M ).

The behavior over longer time intervals can be analy
in a similar fashion, and as for model A, one finds

An5N~kBT!2@zB1~M21!hB#n, ~75!

so that

n5
kBT t

2 S 11zB1hB

12zB2hB
D1wBS c,

a2

t D . ~76!

The last term on the right hand side of Eq.~76! is a finite cell
size correction. In two dimensions and for model A,wA
5a2/(12t) @3#. As discussed in Sec. III A 1, it occurs be
cause the substitutionDj iy5tv iy in the first term on the sum
on the right hand side of Eq.~8! is not precisely correct. In
the present case, however, there are additional correc
because the rotation matrices always leave one compone
the velocity unaltered. As a result, there are contributions
C1 that have projections onC0.

Finite cell size correction. In order to simplify the discus-
sion of the finite cell size corrections, the following calcul
tions are performed in the limitM→`. In this case, the time
evolution equations reduce to

v ix~t!5v ix~0!,

v iy~t!5cv iy~0!1zsv iz~0! ~77!

for rotations around thex axis,
03670
-

d

ns
t of
o

v ix~t!5cv ix~0!1zsv iz~0!,

v iy~t!5v iy~0! ~78!

for rotations around they axis, and

v ix~t!5cv ix~0!1zsv iy~0!,

v iy~t!5cv iy~0!2zsv ix~0! ~79!

for rotations around thez axis, where as before,c ands are
the cosine and the sine of the rotation anglea. z561 speci-
fies the sign ofa.

When calculatingC1, we have to consider rotations abo
the three symmetry axes separately. As can be seen from
~79!, rotations about thez axis mix both thex andy compo-
nents of the velocity, so that the situation is similar to th
considered in Sec. II B 4 of Ref.@3#. Although the same tech
niques can be used to evaluateC1

z as in Ref.@3#, we know
from the results of that paper that there are no finite cell s
corrections in this case.

The situation is different for rotations about thex and y
axes. For rotations about thex axis, one has

t2C1
x5kBT(

i
^Dj iy~0!Dj iy~t!&, ~80!

so that^Dj iy(0)Dj iy(t)& needs to be evaluated. Using th
approach described in Sec. II B 4 of Ref.@3#, we have

t2C1
x/NkBT5aE

0

a

dy0 (
n,m52`

` E
(na2y0)/t

[(n11)a2y0]/ t

dvy

3E
b0

b1
dvznm w~vx!w~vz!, ~81!

where all velocities are at equal time, so that we ha
dropped the argument(0). Note that the average overz5
61 has already be performed. The limits on the inner in
gral are

b05@~m1n!a2y02vy~11c!t#/~st! ~82!

and

b15@~m1n11!a2y02vy~11c!t#/~st!. ~83!

w(vx) is the Boltzmann distribution,

w~vx!5
1

A2pkBT
expH 2

vx
2

2kBTJ . ~84!

Equation~81! looks very similar to Eqs.~18! and~41! in Ref.
@3# and can be evaluated in an analogous fashion. We th
fore only sketch the main steps of the analysis, referring
Ref. @3# for details.

The Poisson sum formula@18#

(
n52`

`

g~n!5 (
m52`

` E
2`

`

g~f!e22p imfdf ~85!
1-10
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is first used twice to transform the double sum overm andn
in Eq. ~81!. Partial integrations overvx andvz are then per-
formed. The temperature independent part of the resul
expression can be determined by evaluating them̄5n̄50
contribution of the remaining sums. The final result of the
calculations is

t2C1
x/NkBT52

a2

12
1O~kBT!. ~86!

For rotations about they axis, one has

t2C1
y5kBT c(

i
^Dj iy~0!Dj iy~t!&. ~87!

In this case, v iy(t)5v iy(0), and the calculation of
^Dj iy(0)Dj iy(t)& can be performed using the methods o
lined above. The final result is

t2C1
y/NkBT52c

a2

12
1O~kBT!. ~88!

Averaging over all three different rotation axes, it follow
that

t2C1 /NkBT52
a2

36
~11c!1O~kBT!. ~89!

Adding this to the contribution fromC0, the final approxi-
mation for the finite cell size correction for model B is

wB~c,a2/t!5
a2

18t S 12
c

2D . ~90!

Although this result is obtained forM→`, and neglects con
tributions fromCn with n>2, it reproduces the behavior o
the viscosity over rotation angles between 10° and 140°
l/a.0.5 with an error smaller than 2%.

For M→`, the off-diagonal contributions to the viscosi
vanish, and the kinematic viscosity has a minimum ata
5120° for l/a→`. For this value ofa,

nmin
B 5tkBTF1

6
1

5

72S a

l D 2G . ~91!

This is significantly smaller than the minimum value given
Eq. ~35! for model A, but still larger than the minimum valu
in two dimensions, Eq.~36!.

Figure 10 contains a plot of the normalized kinema
viscosity n/(tkBT) as a function ofa for l/a51.15 and
M520. Data for the the kinetic (3) and rotational (h)
contributions, as well as the total (d) viscosity, are plotted
and compared with the theoretical prediction, Eqs.~76! and
~90!. The agreement is excellent. Note, in particular, that
finite cell size contribution to the total viscosity is not ne
ligible, particularly for large rotation angles. In Fig. 11, th
normalized viscosityn/(tkBT) is plotted as a function ofM
for a590° andl/a51.15. Again, the agreement betwee
theory and simulation is excellent. Finally, Fig. 12 shows
normalized total shear viscositynt/a2 as a function of
03670
g

e

-

d

e

e

(l/a)2 for M520 anda590°. Note, in particular, that both
the M dependence of the viscosity as well as the size of
finite cell size correction—given by the intercept—are acc
rately described by theory.

2. Thermal diffusivity

The kinetic part of the reduced flux for the calculation
the thermal diffusivity is given by Eq.~38!, where again,
Bn[^I 5

kin( ẑ,0)uI 5
kin( ẑ,nt)&. The calculation of the therma

diffusivity simplifies considerably if we utilize relation~39!
and the following relations:

FIG. 10. Various contributions to the normalized shear viscos
n/tkBT for model B as a function of the rotation anglea at large
mean free path,l/a51.15. The symbols are simulation data for th
kinetic contribution (3), the rotational contribution (h), and the
total viscosity (d). The solid line is the theoretical prediction, Eq
~76! and ~90!. The viscosity has a minimum ata5120°, as pre-
dicted by theory. The data were obtained by time averaging o
40 000 iterations. Parameters:L/a532, t51, andM520.

FIG. 11. Various contributions to the normalized shear viscos
n/tkBT for model B as a function ofM for large mean free path
l/a51.15, anda590°. The symbols are simulation data for th
kinetic contribution (3), the rotational contribution (h), and the
total viscosity (d). The solid line is the theoretical prediction, Eq
~76! and~90!. For this value ofl/a, rotational contributions to the
total viscosity are negligible.
1-11
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K S cpT2
v i

2~ t !

2 D v ix
mL 50 for m51, 2, and 3, ~92!

K S cpT2
v i

2~ t !

2 D v ix
4 L 53~kBT!3, ~93!

and

K S cpT2
v i

2~ t !

2 D v ix
2 v iy

2 L 5~kBT!3. ~94!

B0 is the same as in model A, namely,

B05
5

2
N~kBT!3. ~95!

B1 ~including off-diagonal terms! is

B15
5

2
N~kBT!3@gg41~M21!g5#, ~96!

whereg is given given in Eq.~55!,

g45@112~z1
21z2

2!#/3, ~97!

wherez1 and z2 are defined in the text following Eq.~70!,
and

g55
16

15

~12c!2

M3 . ~98!

The coefficientsBn form a geometrical series, becau
successive rotations are uncorrelated. This can be see
first performing an average over the rotation angle andthen
performing the thermal average. In particular,

FIG. 12. Shear viscosity for model B as a function ofl/a for
a590° andM520. The symbols are simulation data for the kine
contribution (h) and the total viscosity (d). The slope of 0.297 is
in excellent agreement with the theoretical prediction, 0.28
which follows from Eqs.~76! and~90!. Note that forM→`, theory
predicts a slope of 0.25; 1/M corrections are therefore importan
even forM520. Parameters:L/a532, t51.
03670
by

Bn5
5

2
N~kBT!3@gg41~M21!g5#n, ~99!

so that the thermal diffusivity is

DT5
kBTt

2 F11gg41~M21!g5

12gg42~M21!g5
G . ~100!

Note that the off-diagonal contribution is of order 1/M2; it is
therefore less important than for the shear viscosity.

3. Self-diffusion coefficient

The diffusion constant can be determined as
Sec. III A 2 for model A. The final result is

D5
kBTt

2 S 11g

12g D , ~101!

which is the same as for model A@see Eq.~57!#. It is inter-
esting to note that

DT

D
→1 forM→`, ~102!

for both models A and B as well as in two dimensions.

B. Small mean free path approximation: Shear viscosity

A detailed calculation of the shear viscosity in this lim
can be performed following the arguments used in S
III A 2 for model A and in Ref.@3# for two dimensions. How-
ever, for model B, the following simple argument gives t
same result. Consider the momentum transfer across a p
perpendicular to thez axis. Only rotations about thex andy
axes produce a nonzero momentum transfer, and since
momentum transfer—and therefore the resulting viscosit
from each of these rotations is equal to that calculated t
dimensions@3#, one finds that

n3D5
2

3
n2D5

a2

18t
@12cos~a!#. ~103!

Note that this expression is identical to the one obtained
model A. Data for thea dependence of the normalized vi
cosity,nt/a2, atl/a50.0361 are plotted in Fig. 13. Note, i
particular, the importance of kinetic contributions to the v
cosity for smalla, even for this small value ofl/a.

V. SUMMARY

In this paper we have presented a comprehensive ana
cal and numerical study of the stochastic rotation dynam
model for fluid dynamics in three dimensions for two col
sion rules. The first collision rule~model A! consists of a
rotation by an anglea about a randomly chosen axis. It wa
introduced in Refs.@4# and@5# and used in Ref.@8# to study
channel flow and flow about a spherical object. A new, si
pler collision rule ~model B!, in which collisions involve
rotations by an angle6a about one of three orthogonal axe
was also discussed. Calculations involving this model

,

1-12
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particularly simple, since the rotations about the individu
axes are very similar to those in two dimensions. In parti
lar, it was possible using this model to calculate the o
diagonal contributions to the thermal diffusivity; a simil
calculation for model A was prohibitively tedious. Since bo
models are comparable with regard to their computatio
efficiency, i.e., relaxation rates, range of viscosities, etc.,
simplicity of model B can have advantages in specific ap
cations.

Discrete time Green-Kubo relations originally derived
Refs.@1# and@2# were used to determine explicit expressio
for the shear viscosity, the thermal diffusivity, and the se
diffusion constant. The kinetic, collision, and mixed cont
butions to the transport coefficients were analyzed indivi
ally, and no assumptions regarding molecular chaos w
made. This enabled us to determine correlation induced fi
cell size corrections to the shear viscosity which persist e
in the limit of large mean free path. In Ref.@3# it was shown
that these corrections can, under certain circumstances,
as collisions witha590° and large particle density, provid
the dominant contribution to the shear viscosity in two
mensions. In three dimensions, we showed here that co
tions of this type, while not entirely negligible, are rath
small for model A. However, as discussed in Sec. IV A 1,
model B, where collisions involve rotations about one
three previously defined orthogonal axes, there are additi
finite cell size corrections that make non-negligible contrib
tions to the viscosity for a wide range of densities and ro
tion angles. It is important to note that corrections of th
type are only important for the shear viscosity.

It was also shown how quaternion algebra can be use
simplify calculations of kinetic contributions to the transpo
coefficients. In particular, the appendixes describe the ca
lation of the thermal diffusivity in model A using quate

FIG. 13. Normalized shear viscositynt/a2 for model B as a
function of the rotation anglea for small mean free path,l/a
50.0361. The bullets are simulation data and the solid line is
theoretical prediction, Eq.~103!, for the rotational contribution to
the kinematic viscosity. The deviation of the data from the theo
ical prediction fora,30° is due to the increasing importance of t
kinetic contribution to the viscosity~see Fig. 10!. The data were
obtained by time averaging over 40 000 iterations. Parame
L/a532, t51, andM520.
03670
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nions. Finally, simulation results for the viscosity, therm
diffusivity, and the self-diffusion coefficient for a range o
simulation parameters were presented and compared to
analytical approximations. In all cases, agreement was ex
lent; furthermore, the comparisons showed that the finite
size corrections described above are necessary in orde
achieve quantitative agreement.
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APPENDIX A

The calculation of correlation functions of the reduc
fluxes can be simplified by rewriting the time evolutio
equations for the velocities using quaternions. Two arbitr
quaternions,P andQ, are defined by

P[~p,P!, ~A1!

Q[~q,Q!, ~A2!

where$p,q% are the scalar parts and$P,Q% the correspond-
ing vector parts of the quaternions. If the scalar part is ze
the quaternion is an ordinary vector and is called as a ‘‘pu
quaternion. The multiplication rule of two quaternions
given by @19#

PQ[~pq2P•Q, pQ1qP1P3Q!. ~A3!

It follows that for two pure quaternions,R[(0,R) and S
[(0,S),

RSR5~0,2uRu2S!. ~A4!

Defining

V~ t ![„0,v~ t !…, ~A5!

U[~0,uj!, ~A6!

and

Vr[~0,vr ![V~0!2U. ~A7!

The time evolution equation for the velocities, Eq.~16!, can
be written as

V~t!5AVrA* 1U, ~A8!

where

A[„cos~a/2!,R̂ sin~a/2!…. ~A9!

e

t-

s:
1-13
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The first term in Eq.~A8! corresponds to the rotation of th
relative velocity vector around the random axisR̂. Using the
multiplication rule given in Eq.~A3!, it is easy to see that Eq
~A8! is equivalent to Eq.~16!. Similarly, using Eq.~A4! it
can be shown that

„V3~t!…z52v2~t!vz~t!. ~A10!

Dropping the indexi, B1 given by Eq.~41! can be written as

~A11!

or by using Eq.~A10!, as

B1

N
5

1

4
^„V3~t!…zvz~vx

21vy
21vz

2!&2
cpT

2
^„V3~t!…zvz&.

~A12!

Using the multiplication rule for quaternions, and the fa
that AA* 51, it can be shown that

V3~t!5A~Vr !3A* 1U2AVrA* 1AVrA* UAVrA*

1UA~Vr !2A* ~A13!

1A~Vr !2A* U1U31AVrA* U21UAVrA* U. ~A14!

Simplifying terms and using energy conservation,

(
a

@va
r ~t!#22@va

r #250, ~A15!

one obtains

B185
1

4
^$vx

21vy
21vz

212ujx@vx~t!2vx#12ujy@vy~t!2vy#

12ujz@vz~t!2vz#%~vx
21vy

21vz
2!vz~t!vz& ~A16!

5
~kBT!3

12 H 35~112c!1
2~12c!

M F31216c

1
20

M
~2c21!G1

576~12c!2

5M3 J . ~A17!

and
03670
t

B195
cpT

2
^$vx

21vy
21vz

212ujx@vx~t!2vx#

12ujy@vy~t!2vy#12ujz@vz~t!2vz#%vz~t!vz&

~A18!

5
5~kBT!3

12 F5~112c!1
10

M
~12c!

2
16

5M2
~12c!2S 12

4

M D G , ~A19!

which then yields Eq.~42! when substituted into Eq.~A11!.

APPENDIX B

In the limit M→`, U→(0,0), and Eq.~A8! can be writ-
ten as

V~t!5AVA* , ~B1!

where we have dropped the superscript ‘‘r , ’’ so that V
[V(0). Thecube ofV(t) is then simply

V3~t!5AV3A* , ~B2!

where

V35~0,2uvu2v!. ~B3!

This means thatV3(t) is the rotation of the vector2uvu2v
around a random axisR̂. Equations~B2! and ~B3! can be
used to evaluate the second term in Eq.~A11!, namely,

E1[
2B19

cpT
5^v2~t!vz~t!vz&52^~AV3A* !zvz&, ~B4!

which can be shown to equal

E155~kBT!2F2 cos~a!11

3 G . ~B5!

Similarly, for t52t,

V~2t!5A8V~t!A8* , ~B6!

where prime denotes a different random vector then in
~A9!. Using energy conservation and the commutator

@A8,V#5@0,2 sin~a/2!R̂83v#, ~B7!

V3(2t) can be written as

V3~2t!52uv~2t!u2V~2t! ~B8!

52uv~t!u2A8V~t!A8* ~B9!

52uv~t!u2~VA81@A8,V# !A8* ~B10!

52uv~t!u2V2uv~t!u2S 0,2 sin
a

2
R̂83vDA8* , ~B11!
1-14
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so that

„V3~2t!…z52v2~t!vz~t!F2 cos~a!11

3 G . ~B12!

Since

E2[^v2~2t!vz~2t!vz&52^„V3~2t!…zvz&, ~B13!

one gets finally,
s.

un

03670
E25F2 cos~a!11

3 GE155~kBT!2F2 cos~a!11

3 G2

,

~B14!

so that the termsBn9 form a geometric series. It can also b
shown that theBn8 are terms in a geometric series, with th
same angular dependence. The difference of these two te
is therefore also a geometric series.
m-

un.

un.

s

s

@1# T. Ihle and D.M. Kroll, Phys. Rev. E63, 020201~R! ~2001!.
@2# T. Ihle and D.M. Kroll, Phys. Rev. E67, 066705~2003!.
@3# T. Ihle and D.M. Kroll, Phys. Rev. E67, 066706~2003!.
@4# A. Malevanets and R. Kapral, J. Chem. Phys.110, 8605

~1999!.
@5# A. Malevanets and R. Kapral, J. Chem. Phys.112, 7260

~2000!.
@6# A. Lamura, G. Gompper, T. Ihle, and D.M. Kroll, Europhy

Lett. 56, 319 ~2001!.
@7# A. Lamura and G. Gompper, Eur. Phys. J. E9, 477 ~2002!.
@8# E. Allahyarov and G. Gompper, Phys. Rev. E66, 036702

~2002!.
@9# A. Malevanets and J.M. Yeomans, Europhys. Lett.52, 231

~2000!.
@10# A. Malevanets and J.M. Yeomans, Comput. Phys. Comm

129, 282 ~2000!.

.

@11# Y. Hashimoto, Y. Chen, and H. Ohashi, Comput. Phys. Co
mun.129, 56 ~2000!.

@12# T. Sakai, Y. Chen, and H. Ohashi, Comput. Phys. Comm
129, 75 ~2000!.

@13# T. Sakai, Y. Chen, and H. Ohashi, Phys. Rev. E65, 031503
~2002!.

@14# T. Sakai, Y. Chen, and H. Ohashi, Colloids Surf., A201, 297
~2002!.

@15# Y. Inoue, Y. Chen, and H. Ohashi, Comput. Phys. Comm
142, 114 ~2001!.

@16# Y. Inoue, Y. Chen, and H. Ohashi, J. Stat. Phys.107, 85 ~2002!.
@17# S.H. Lee and R. Kapral, Physica A298, 56 ~2001!.
@18# P.M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!.
@19# S.L. Altman, Rotations, Quaternions, and Double Group

~Clarendon Press, New York, 1986!.
1-15


